LLM Jailbreak: X-Teaming Attack Achieves 98% Success Against Top Models

A new method called X-Teaming significantly bypasses security measures in leading Artificial Intelligence language models with a 98% success rate.

A novel approach known as X-Teaming has emerged in the field of machine learning, capable of ´jailbreaking´ large language models (LLMs) and circumventing their built-in security measures. The reported 98% success rate highlights a significant vulnerability within top-performing models, raising serious concerns for the Artificial Intelligence security community.

X-Teaming takes advantage of collaborative prompt engineering, employing multiple coordinated prompts or users to break restrictive safety protocols in LLMs. This technique allows attackers to generate responses that typically violate the intended guidelines and content filters imposed by model developers.

The discovery draws attention to ongoing challenges faced in securing conversational Artificial Intelligence and the urgent need for robust, adaptive defenses. Researchers and developers are now tasked with reinforcing LLM safety systems, and the X-Teaming method has sparked debate on transparency, responsible disclosure, and further collaboration in securing Artificial Intelligence technologies.

78

Impact Score

Artificial Intelligence, chips, and robots set the tone at CES 2026

CES 2026 in Las Vegas put Artificial Intelligence at the center of nearly every major announcement, with chipmakers and robotics firms using the show to preview their next wave of platforms and humanoid systems. Nvidia, AMD, Intel, Qualcomm, Google, Samsung, Hyundai, and Boston Dynamics all leaned on Artificial Intelligence to anchor their product strategies.

Inside the UK’s artificial intelligence security institute

The UK’s artificial intelligence security institute has found that popular frontier models can be jailbroken at scale, exposing reliability gaps and security risks for governments and regulated industries that rely on trusted vendors.

Siemens debuts digital twin composer for industrial metaverse deployments

Siemens has introduced digital twin composer, a software tool that builds industrial metaverse environments at scale by merging comprehensive digital twins with real-time physical data, enabling faster virtual decision making. Early deployments with PepsiCo report higher throughput, shorter design cycles and reduced capital expenditure through physics-accurate simulations and artificial intelligence driven optimization.

Contact Us

Got questions? Use the form to contact us.

Contact Form

Clicking next sends a verification code to your email. After verifying, you can enter your message.